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Abstract— This study provides some new insights into the
scalability of reliable group communication mechanisms using
overlays. These mechanisms use individual TCP connections
for packet transfers between end-systems. End-systems store
incoming packets and forward them to downstream nodes using
different unicast TCP connections. In this paper we assume
that buffers in end-systems are large enough for the transfers.
It is shown that the throughput of the reliable overlay group
communication scales in the sense that for all multicast tree sizes
and topologies, the group throughput is strictly positive under
natural conditions. This is in contrast with the IP supported
multicast paradigm where reliable protocols have vanishing
throughput when the group size tends to infinity. The scalability
of packet delay and buffer occupancy is then investigated. In
the absence of additional control, the occupancy of the buffer
and the latency in the end-systems explodes with time. It is then
shown that proactive rate throttle mechanism implemented at the
source leads to finite packet latency and buffer occupancy in any
end-system of the network provided certain moment conditions
are satisfied by cross traffic in the routers.

I. INTRODUCTION

Reliable group communication has remained an important
research problem for the last decade. Significant effort has
been spent on the design and evaluation of reliable multicast
transport protocols, see for example [11], [7], [18] and the ref-
erences therein. However, such IP supported reliable multicast
schemes have been facing two major obstacles. First, there is
no wide spread deployment of IP multicast in the Internet.
Second, it has been shown in various studies [24], [9] that
group throughput vanishes when the group size increases, thus
suffering from scalability issues.

Recently an alternative approach that uses overlays of end-
systems has been proposed to support group communications.
In this approach, end-systems form an overlay by establishing
point-to-point connections in between end-systems, where
each node forwards data to downstream nodes in a store-and-
forward way. The multicast distribution tree is formed at the
end-system level. Such a paradigm is referred to as end-system
multicast, or application-level multicast, or simply multicast
using overlays. Various studies have been conducted with
the primary focus on the protocol development for efficient
overlay tree construction and maintenance, such as Narada
[10], Yoid [12], ALMI [23], Host Multicast [28], NICE [6],
Delauney graph [19], and [26], [25].

Reliable multicast can also be implemented in overlay
using point-to-point TCP connections. In Overcast [16], HTTP
connections are used in between end-systems. In RMX [8],
TCP sessions are directly used. The main advantage of such
approaches is the ease of deployment. In addition, [8] argues
that it is possible to better handle heterogeneity in receivers
because of hop-by-hop congestion control and data recovery.

However there is a lack of understanding of the performance
of TCP protocol when used in an overlay based group commu-
nication to provide reliable content delivery. Although studies
in [8], [16] have advocated the usage of overlay networks of
TCP connections, they do not address the scalability concerns,
in terms of throughput, buffer requirements and latency of
content delivery. In [27], the authors investigated this scal-
ability issues while considering a TCP-friendly congestion
control mechanism with fixed window-size for the point-to-
point reliable transfer. Simulation results were presented to
show the effect of the size of end-system buffers on the group
communication throughput.

In our work, we provide a mathematical framework based on
the max-plus representation of TCP to address the scalability
of overlay group communication when TCP is used for provid-
ing reliable content delivery. Using theoretical investigations,
experimentations in the Internet, and simulations of large
networks, we examine the scalability of three key features of
such overlays with respect to the size of the group: throughput
of the group communication; delay of packets to reach end-
systems; buffer requirements at the end-systems.

We first examine the dependency of the throughput on group
size and on the network connectivity. For this, we provide a
framework to study the behavior of a group of TCP sources
in a chain and then in a tree topology based on the max-
plus algebra (see e.g. [5] and the references therein) under
the assumption of infinite buffer space at each intermediate
end-system. Each TCP connection is represented by a set of
FIFO routers in series where some marking scheme is used for
controlling the sources. Using this framework, we establish a
first result that states that irrespective of the group size and
the behavior of the underlying network connecting the end-
systems in the overlay network, there exists a strictly positive
group throughput. This contrasts with the known result estab-
lished in the case of IP-supported multicast for reliable group
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communication about the non-scalability of such protocols.
In addition, we establish the maximum possible throughput
achievable for a set of receivers and the conditions that are
required to achieve this maximum throughput.

We then examine the following more difficult question: does
there exist mechanisms that can achieve both a scalable (non-
zero) group throughput and a finite packet delay, as well as a
finite buffer occupancy in each end-system of an overlay with
a general tree topology? We propose and analyze a pro-active
mechanism which throttles the sending rate of the source. We
show that there exists a critical rate such that when the sending
rate at the origin node is limited to this critical rate, one
can guarantee (in some sense to be defined precisely in the
paper) bounded buffers and latency at all the nodes in the
overlay tree. This shows that rate control combined with TCP
congestion control mechanism provides a scalable approach
in both throughput and buffer occupancy. We also show that
the mean delay spent in each end system, or equivalently the
mean buffer occupancy in each end system, can be evaluated
by computing the Legendre transform of some hydrodynamic
limit associated with the saturated source case.

Using a prototype implementation of the TCP overlays, we
conducted experiments in the Internet to validate these results.
In addition to this, we designed a simulator taking advantage of
the max-plus representation of TCP connections and allowing
one to simulate the transmission of a large number of packets
over overlay networks consisting of very large trees. Various
simulation results are also presented.

Moreover, we found that in order to maximize the group’s
throughput, the design of the protocol and the construction of
the distribution tree should take into account the local maxi-
mum throughput (see definition below) of the TCP connections
between end systems.

The paper is organized as follows. Section II defines the
problems under consideration and presents the notation and the
mathematical models. In Section III, we prove the existence
of positive throughput in a tandem of TCP sources with
unconstrained buffers at end-systems. This result is then ex-
tended to any arbitrary tree configuration of overlay network.
In Section IV we introduce the rate-control based protocol
allowing one to bound the buffer occupancy and the latency
for any arbitrary group size. In Section V, we discuss how the
theoretical results obtained in the paper can be used for the
design of new reliable group communication protocols using
overlays. Section VI summarizes the work.

II. MODELING OVERLAY GROUP COMMUNICATION

A. Reliable Overlay Group Communication

At a high level of abstraction, an overlay network can be
described as a directed communication graph where the nodes
are the end-systems and an edge between any two nodes a
and b represents the data forwarding network from node a to
node b. An edge in the overlay network represents the path
between the two nodes that it connects. While this path may
traverse several routers in the physical network (see the models
introduced in §II-C) on which a feedback control mechanism

is enforced, this level of abstraction considers the path as a
direct edge in the overlay network. While it is not required,
we assume that the nodes are connected in a tree topology.
As illustrated in Figure 1, after receiving data from its parent
node in the overlay network, a node replicate the data on each
of its outgoing edges and forward it to each of its downstream
nodes in the overlay network.

The topology is typically constructed accounting for for-
warding capacity of each node and geographical distance
between nodes. Let us examine how TCP may be used in
this overlay network to support reliable content delivery. The
obvious approach that does not require any changes to TCP
protocol is to use end-point abstraction for every edge, i.e. a
TCP connection for every edge in the overlay network. In this
model, a node after receiving data store it and forward it on
a per-connection basis using established TCP connections for
each of its downstream nodes in the overlay tree.

TCP3→7

①

③

⑦ ⑥

④

⑤

②
TCP2→5

TCP2→4

TCP1→3

TCP3→6

TCP1→2

Fig. 1. A binary tree overlay network

In such an overlay network, except for leaf nodes, all
the other nodes, which store and forward packets, need to
provision buffers for the packet forwarding purpose. One
buffer is needed at the sender side for each of the TCP
connections. Disc space is abundant in typical end-systems
such as PCs or work stations. In such systems, the end-system
buffers can be provisioned large enough to accommodate the
TCP traffic. In the analysis presented in this paper we assume
infinite buffer capacity at each end-system. This is in particular
justified when each end-system keeps data in local storage
system for its own use.

For the case where end-systems do not necessarily need to
keep all data in local storage system, and only play the role
of a relay system, we propose a proactive mechanism which
consists in throttling the send rate of the source in such a way
that the buffer occupancies as well as the packet delays are
finite in all end-systems. In this case, we study in particular
how much buffer space each end-system has to provide in
order to play its relay role for the group communication.

B. Problem Definition and Methodology

We define the group throughput of an overlay network as
the minimum sending rate across all its edges. Due to the
reasons explained above, the group throughput in an overlay
network with TCP sessions on each of the overlay edges
depends upon the network conditions of the underlying paths
between the nodes and also on the buffer capacity at each
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node. Some understanding on this dependency is needed in
order to determine the conditions under which overlay based
reliable group communication can scale in group size. Also
this understanding would help us design appropriate overlay
topology to maximize the group throughput.

Specifically, our study examines the following:

• how the group throughput is related to the local maximum
throughput of TCP connections at the overlay edges,
where this local maximum throughput of TCP connection
is defined as the throughput achieved with an infinite
source at the sender node of this TCP session;

• what conditions are needed to achieve a positive through-
put irrespective of group size?

• whether it is feasible to provide any scaling behavior in
terms of delay and buffer requirements?

• how one should construct the forwarding tree in order to
maximize group throughput?

To investigate the above issues, we resort to both theoretical
modeling, simulation and experimentation in the Internet using
a prototype implementation. Using previous results on the
modeling of TCP via the max-plus algebra [5], we extend the
model to analyze the behavior of TCP connections in tandem.
Next we apply the results from tandem TCP connections to
examine the behavior of TCP sessions in a tree topology.
This max-plus algebra ([4]) is particularly useful to describe
synchronization constraints such as window flow control, the
serialization associated with queueing or the fork at end-
systems. In the present paper, it is primarily used in order
to reduce some of the questions of interest to longest path
problems in certain infinite random graphs along the lines of
what was done for other models in [1] and [21].

It should be stressed that most of the techniques of [4]
cannot be used directly for the present study. First the fixed
support assumptions of Chapters 7 and 8 of [4] do not
hold here because of the varying window size. Second, a
fundamental reason stems from the necessity to handle random
graphs in a two dimensional infinite lattice in order to analyze
the stationary regime of very large (here infinite) overlay
networks, a case not covered in [4] either.

C. A Model for TCP Connections in Tandem

We shall first consider a special case of the overlay topology
which is the chain topology. The general topology is consid-
ered in the next section.

1) Assumptions and Notation: The overlay network con-
sists of K nodes (end-systems), arranged in tandem, from 1
to K, as illustrated in Figure 2. The source, denoted as node
0, has an infinite number of packets to multicast. The m-th
packet is available at time Tm. The sequence Tm is (strictly)
increasing or constant (e.g. Tm = 0 for all m = 1, 2, . . . ). We
shall assume throughout the paper that the inter-arrival times
{Tm − Tm−1}m form a stationary and ergodic sequence1 so

1This level of generality is required as even if one takes a renewal process as
input of some overlay network, the output process of the overlay is stationary
and ergodic but not a renewal sequence. For more on the matter, see e.g. [2]
and the comments following Assumption 1 below.

that the limit λ ≡ limm→∞ m/Tm exists with probability 1.
This constant denotes the arrival intensity of the packets at the
source. If all the packets are available at time 0 (i.e. Tm ≡ 0),
we have λ = ∞. We refer to this case as the saturated case.

The (TCP) connection from node k to node k+1 is referred
to as overlay edge k. Underlying overlay edge k, there are Hk

routers, denoted as routers (k, h) for h = 1, . . . ,Hk, which are
modeled by single server queues. The TCP congestion control
is characterized by the variable W

(k)
m , representing the window

size as seen by packet m at node k. This node is allowed to
transmit packet m when packet m−W

(k)
m is received by node

k + 1. We assume that the routers use a marking scheme for
letting the TCP connection adapt to local variations of traffic.
The case of a loss system is not considered here (for loss based
congestion control mechanisms, an additional resequencing
mechanism has to be implemented and represented at the
output of each TCP connection at the occurrence of a loss
in order to fulfill the increasing packet sequence number
requirement).

All these routers can have cross traffic (packets from other
connections using the same router). The effect of such cross
traffic is modeled by aggregated service times which represent
the processing time of the packet of the reference TCP
connection (say from node k to node k + 1) in the router
plus the additional waiting time due to cross traffic packets
interleaved between two packets of the reference connection.
Such a modeling approach was also used in [9]. We denote
by s

(k,h)
m the aggregated service time experienced by the m th

packet going through the h-th router of the overlay edge k.
The node (end-system) itself is modeled as a single server

queue whose service time (denoted by s
(k,0)
m ) can take into

account the time to copy an incoming packet to an outgoing
queue inside the end-system. Typically, this time is negligible
compared to end-to-end round trip times ; in the rest of the
paper we assume s

(k,0)
m ≡ 0.

2) Evolution Equations and Longest Paths in a Graph: We
follow the TCP modeling approach proposed in [5]. For each
TCP connection, we establish the evolution equations govern-
ing the packet departure times. TCP window size’s evolution
is governed by independent packet marking processes.

Let x
(k,h)
m be the time when router (k, h) has finished

forwarding packet m. Let ∨ denote max. Then for all k:

x(k,h)
m =

(
x

(k,h)
m−1 ∨ x(k,h−1)

m

)
+ s(k,h)

m , h > 1 (1)

x(k,1)
m =

(
x

(k,1)
m−1 ∨ x(k,0)

m ∨ x
(k,Hk)

m−W
(k)
m

)
+ s(k,1)

m (2)

x(k,0)
m =

(
x

(k,0)
m−1 ∨ x(k−1,Hk−1)

m

)
+ s(k,0)

m , k > 1 (3)

x(1,0)
m =

(
x

(1,0)
m−1 ∨ Tm

)
+ s(1,0)

m . (4)

In words, these equations state that in order to serve packet m,
the previous packet m−1 should have departed from the same
router; packet m should have arrived from the upstream router;
and for the first router of the TCP connection, the transmission
should be allowed by the TCP congestion control.
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End-system K
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(K)
mW

(1)
m

Tm

The source Overlay Edge number 1 Overlay Edge number KEnd-system 1
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K,HK
m

. . .

s1,0
m s1,1

m

. . .

s
1,H1
m

. . . . . .

Fig. 2. TCP connections in tandem

The presence of packet marking is taken into account
via the evolution of the window size (W (k)

m )m∈Z, which is
governed by the AIMD rule of the congestion avoidance phase
of RENO. The window sequences is assumed independent
for different overlay edges. For each edge k, we consider a
Markov chain made of (W (k)

m , r(k)
m )m∈Z with

(W (k)
m , r

(k)
m ) ∈

{
(w, r) ∈ {1, 2, . . . ,Wmax}2 | r ≤ w

}
,

where Wmax is the maximum window size, W
(k)
m is the current

window size, and r
(k)
m is the counter triggering window size

increments. When the packet marking process is Markovian,
the joint process of the packet marking and (W (k)

m , r
(k)
m ) is

Markovian as well. In particular, when the packet markings
are Bernoulli, transition of (W (k)

m , r
(k)
m ) are given by:

From (w, r), with r > 1, the next state is:{
(w, r − 1) with probability 1 − pk ,
(�w

2 � ∨ 1, �w
2 � ∨ 1) with probability pk .

From (w, 1), the next state is{
((w + 1) ∧ Wmax, (w + 1) ∧ Wmax) w. p. 1 − pk ,
(�w

2 � ∨ 1, �w
2 � ∨ 1) w. p. pk .

The parameter 0 < pk < 1 represents the packet marking
probability along the routers of this edge of the overlay
network. This Markov chain is irreducible and aperiodic over
a finite state space, and thus converges to a steady state
with coupling in finite time, and so does the joint process
(W (1)

m , r(1)
m , . . . ,W (K)

m , r(K)
m )m∈Z.

Note that other features of TCP such as timeout, retransmis-
sion, acknowledgment packet delays, can also be taken into
consideration in these equations in the way presented in [5].

As one can observe from Equations (1–4), only the operators
maximum and plus are used. Thus, as in [5], the TCP
connections in tandem can be represented as linear evolution
equations in the max-plus algebra. These equations can be seen
as a recursive way of computing the evolution of the packets
in a large tandem (and in the same way in a large tree). They
are the basis of the simulation tool used later in the paper.

Instead of using matrix algebraic calculations in the max-
plus algebra, we adopt a more direct approach based on
weighted random graph. The random graph describes the
dependency relations between state variables x

(k,h)
m . It has

• the set of vertices V = {(m, k, h)|m ≥ 1, 0 ≤ k ≤
K, 0 ≤ h ≤ Hk}, and vertex (m, k, h) has weight s

(k,h)
m ,

where, by convention, we set s
(0,0)
m = Tm − Tm−1;

• the set of edges :

E = {(m, k, h) → (m − 1, k, h) | m ≥ 1}
∪{(m, k, h) → (m, k, h − 1) | m ≥ 0, h ≥ 1}
∪{(m, k, 0) → (m, k − 1,Hk−1) | m ≥ 0, k > 1}
∪{(m, 1, 0) → (m, 0, 0) | m ≥ 0}
∪{(m, k, 1) → (m − W

(k)
m , k,Hk) | m ≥ 0, k ≥ 1} .

This graph represents the dependency structure when
performing the recursive computation of the dates of events
e.g. the computation of the variable with index (m, k, h)
requires that of the variable (m − 1, k, h) etc.

W
(2)
3 = 1

W
(1)
3 = 2

W
(1)
2 = 1

m = 1 m = 2 m = 3

h = 1
h = 2

h = 3
h = 4

k = 1, h = 0

H3 = 5

k = 3

H2 = 3

k = 2

H1 = 4

k = 1

W
(3)
3 = 1W

(3)
2 = 1

h = 1
h = 2

h = 3

k = 2, h = 0

h = 1
h = 2

h = 3
h = 4

k = 3, h = 0

h = 5

k = 0, h = 0k = 0

W
(2)
2 = 1

Fig. 3. Random Graph to represent a tandem of TCP connections

Part of this graph is illustrated in Figure 3, where three types
of edges are presented: horizontal edges (from packet m to
m− 1, for the same station); vertical edges (from station k to
station k−1, with the same packets) and edges representing the
window congestion control (that go backward of Wm packets,
and from the first hop (k, 1) to the last hop (k,Hk) of a
connection).

For a path π defined by a sequence of vertices in the graph,
we denote by Wei(π) the sum of weights of vertices of the
path. It is then easy to check the following property using
induction and the evolution equations (1–4).

x
(k,h)
m is given by the maximum of Wei(π)

over all possible paths π from (m, k, h) to (1, 0, 0) .

Notation : For any value of m, k, h,m′, k′ and h′, let :
• Wei((m,k,h)→(m′,k′,h′) = max

π:(m,k,h)→(m′,k′,h′)
Wei(π);

• Wei(m,k)→(m′,k′) = Wei(m,k,0)→(m′,k′,0).
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III. SCALABILITY OF THROUGHPUT

In this section, we first study the throughput in a chain
topology of the overlay network. We then investigate the
throughput of an arbitrary tree topology. Some experimental
results are then presented at the end of this section.

A. Scalability of the Chain Topology

We use the queueing network model analyzed in the pre-
vious section. We show that the reliable group communi-
cation with such an overlay exhibits a throughput equal to
the minimum of local maximum TCP throughput of overlay
edges, where by local maximum TCP throughput we mean
the throughput achieved by the TCP session whose sender is
not constrained by any upstream node. This result is not so
surprising but it requires a proof.

Let Dλ
m,k = x

(k,Hk)
m be the time when the m-th packet

has been transmitted in the k-th overlay edge. This quan-
tity is denoted D∞

m,k in the saturated case λ = ∞. The
throughput of the group communication is defined as Θλ

1,K ≡
limm→∞ m

Dλ
m,K

, provided the limit exists, where we recall that

λ denotes the arrival intensity of packets at the source. When
this limit exists, it represents the long term average of the
throughput seen at the output of overlay network k. When
λ = ∞, we shall denote it by Θ∞

1,K . Theorem 1 below shows
that under very mild assumptions, the throughput limit exists.

Assumption 1: The sequences of aggregated service times,
{(s(k,h)

m )1≤k≤K,1≤h≤Hk
}m, are jointly stationary and ergodic.

Note that this assumption is very general and allows in
particular the aggregated service times to be long range
dependent. It also contains as a special case the case where
these aggregated service times are i.i.d., as assumed in [27].

Theorem 1: Under assumption 1, for all 1 ≤ k ≤ K,
lim

m→∞
m

Dλ
m,k

converges almost surely to a constant Θλ
1,k.

Proof: We introduce for any a ≥ 1 and b ≥ 0 :

ξ
(k,Hk)
a,a+b =max {Wei(π) | π : (a + b, k,Hk)→ . . .→(a, 0, 0)} .

For the system taken in steady state, this function of the
interval [a, a+ b] is subadditive (this follows from the writing
of this values as path in the graph), and it forms an ergodic
process. Hence by Kingman’s theorem, we have the above
limit for this case. The system that we consider is coupling
with the steady state in a finite number of packets, as seen in
II-C.2, proving the above limit. All details are in [3]. �

Of particular interest is the local maximum throughput of
TCP connections at the overlay edges. Let θk be the local
maximum throughput of the overlay edge k which is defined
as the throughput obtained when it is directly fed by a source
with an infinite backlog. In other words, θk is the value of Θ∞

1,k

when the overlay edges 1, · · · , k − 1 all have zero aggregate
service times on their routers.

Lemma 1: Under Assumption 1, for all 1 ≤ k ≤ K,
Θλ

1,k = min(Θλ
1,k−1, θk), i.e., the throughput of the first k

nodes is the minimum of the throughput of the first k − 1
nodes and the local maximum throughput of overlay edge k,
where by convention Θλ

1,0 = λ.

Proof: For k = 1, the assertion that we need to prove
is Θλ

1,1 = min(λ, θ1). Clearly, if λ ≥ θ1, then the queueing
station (1, 0) is saturated eventually so that the TCP connection
overlay edge 1 behaves as if it was directly fed with a source
with an infinite backlog. Therefore, Θλ

1,1 = θ1 = min(λ, θ1).
If λ < θ1, then the queueing network composed of the

source and the routers of the overlay edge 1 is stable and,
thanks to the convergence in variation of the Markov chain of
the TCP window size (W (1)

m , r
(1)
m ), the output point process

converges with coupling to a stationary and ergodic point
process (see e.g. [5]). Therefore, the throughput of this overlay
is λ too. This completes the proof of the case k = 1.

Assume the assertion holds for some k ≥ 1. Consider the
case of k + 1. Then, the overlay network composed of the
source and the overlay nodes 1, · · · , k acts as the source for
overlay edge k + 1. The same argument as in the induction
base can be used to show that Θλ

1,k+1 = min(Θλ
1,k, θk+1). �

As a direct corollary of Lemma 1, we have
Theorem 2: Under Assumption 1, for all 1 ≤ k ≤ K,

Θλ
1,k = min(λ, θ1, · · · , θk), i.e., the throughput of the first

k nodes is the minimum of the arrival intensity and of the
local maximum throughput of the overlay edges 1, · · · , k. In
particular, if λ = ∞, we have Θ1,k = min(θ1, · · · , θk).

Therefore, when (as it is assumed here) the local maximum
TCP throughputs are strictly positive, the reliable group com-
munication using overlay network is scalable in the sense that
its throughput is lower bounded by the minimum of the local
maximum throughputs.

B. Tree Topologies with Uncongested Access Links

We now consider arbitrary tree topologies, still under the
assumption that the overlay buffers are unbounded. With
general tree topology, the throughput of the group commu-
nication is still defined as the minimum throughput observed
at the end-systems: Θλ

1,K ≡ limm→∞ min1≤k≤K
m

Dλ
m,k

=
min1≤k≤K limm→∞ m

Dλ
m,k

.

Suppose Assumptions 1 and 2 hold with:
Assumption 2: The aggregated service times in any router

of an overlay edge originating from a node are independent of
the number of TCP connections originating from this node.
Then, by the same arguments as above applied to all paths of
the tree, we obtain:

Theorem 3: Under Assumptions 1 and 2, for any arbitrary
tree rooted at the source node, Θλ

1,K = min(λ, θ1, · · · , θK),
and in particular, we have Θ∞

1,K = min(θ1, · · · , θK).
A few comments on Assumption 2 are necessary. The main

restrictive hypothesis of this assumption pertains to the access
links of the end-systems. It assumes that none of these links
is actually congested due to the presence of the multiple TCP
connections originating simultaneously from the end system
nodes, which might not be true if the out degree of nodes
is too large in the overlay tree. In the core of the Internet,
there are simultaneously a big number of other TCP sessions
anyway. So each individual session added by the multicast tree
has little effect on the router’s behavior. Hence Assumption 2
is primarily an assumption on the access links.
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Thus, in contrast to the results of [9] which established that
in the presence of random perturbations, the throughput of IP
supported multicast goes to 0 when the size of the group goes
to infinity, we have a scalability result for the throughput of
overlay multicast trees under Assumption 2.

The main reason for the different fate of throughput in IP
supported reliable multicast as considered in [9] and in overlay
multicast can be intuitively explained as follows. The end-to-
end control of IP supported reliable multicast makes it such
that each node is permanently randomly delayed due to its
waiting for the acks of the the latest of its offspring nodes,
whereas in overlay multicast, each line of offspring of a node
can actually progress at its own and proper speed and a key
decoupling takes place which allows each TCP connection
to get the long term average throughput it would get in the
absence of the other parts of the tree.

C. Tree Topology with Possibly Congested Access Links

Assumption 2 allowed the reduction of overlay trees to
tandem of overlays by assuming that the transfers of the
multicast tree not belonging to some reference path had no
impact on the throughput of the various overlay edges along
this path.

However, if the out degree of some node of the tree is
large, then the access link from this node may become the
actual bottleneck due to the large number of simultaneous
transfers originating from this node. Hence the throughput of
the transfer of the reference overlay edge originating from
this node may in fact very well be significantly affected by
the other transfers originating from this node.

This ”first-mile link” effect can be incorporated in our
model. The extra traffic created by the transfers not located
on the reference path can be represented by an increase of the
aggregated service times on the reference path (we remind that
aggregated service times represent the effect of cross traffic on
the reference TCP transfer – see e.g. [9]).

We now show that whenever the out degree of each node
is bounded from above by some constant integer M (2 in the
case of a binary tree), then the main scalability results of the
last subsections are still valid (though with different constants)
provided some natural assumptions listed below are satisfied.

Assumption 3: Locality assumption: the non-reference
transfers originating from end-system k affect the aggregated
service times of the reference transfer of overlay edge k only;
this assumption is quite natural should the nodes of a given
multicast application be sparse enough for being all located
on different LANs or geographical areas.

Assumption 4: Fairness assumption: let s
(k,h)
m (resp. s

(k,h)
m )

denote the aggregated service time of packet m of the ref-
erence transfer on hop h of overlay edge k when the out
degree of end-system k is equal to 1 (resp. M ). The fairness
assumption states that s

(k,h)
m ≤ Ms

(k,h)
m . The terminology

stems from the fact that if for all m and h, s
(k,h)
m = Ms

(k,h)
m ,

then the average throughput of the reference connection is
exactly divided by M when moving from 1 to M transfers
stemming from node k, which is the usual fairness assumption

made on TCP bandwidth sharing in the presence of multiple
transfers with the same RTTs.

Notice that the situation where s
(k,h)
m = Ms

(k,h)
m for all m

and h corresponds to a worst case scenario since increasing
the number of simultaneous transfers from 1 to M in node k

• should probably only affect the aggregated service times
of the very first hops of overlay edge k rather than all;

• can at most multiply the aggregated service times by M ;
indeed the resulting increase of cross traffic for packet m

on hop h is at most (M − 1)s(k,h)
m where s

(k,h)
m is the

size of the m-th packet of the reference flow divided by
the speed of link h of overlay k. We have then s

(k,h)
m ≤

s
(k,h)
m + (M − 1)s(k,h)

m = Ms
(k,h)
m .

So even in this worst case scenario, under Assumptions 3 and
4, the throughput obtained by each reference transfer is at
most divided by M when taking into account the effect of all
other branches of the tree. So under these two assumptions,
the conclusions of the other sections are still valid with a worst
case scenario obtained by dividing all earlier throughputs by
M .

Above, we assumed that the RTTs of all the TCP connec-
tions originating from a node to its downstream nodes were
approximately the same. In case of heterogeneous RTTs, if
one assumes a bandwidth sharing inversely proportional to
RTT (one of the cases considered in e.g. [17]), it is then easy
to get a similar result via bounding techniques, though with
different constants, at least whenever all RTTs are bounded.

D. Experimental Results

Results of our measurements of throughput and buffer uti-
lization are shown in Figure 4. The leftmost column contains
the symbolic names assigned to hosts used in the experiments.
The indentation in this column describes the structure of
the overlay multicast tree, with the first indentation level
corresponding to the root of the tree, the second to its children
etc. For each non-root node, we list the characteristics of the
incoming link to that node (so that each line actually describes
a link). We repeated measurements 10 times, and took average,
minimum and maximum of measured parameters.

The second column shows the local throughput of the
incoming link in kilobytes per second, measured shortly after
or before the multicast diffusion. We measure local throughput
by sending packets on all downstream links at the maximum
rate, without waiting for incoming transmission. On each local
node, all parallel transfers were started simultaneously so as
to take into account the bandwidth sharing on last-mile links
as described in §III-C.

The last two columns show throughput and buffer utilization
measurements, as observed during the global overlay multi-
cast. In this experiment, buffer size was not restricted. We
report the maximum number of entries used in the buffer
located on the upstream node of the link. Each buffer entry
corresponds to one 100-byte block. 20,000 blocks were sent.
Buffer utilization is measured as a proportion of the maximum
number of blocks used in the buffer to the total number of
blocks sent during experiment. Notice that buffer utilization at
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the root node is high, since data is generated at the root node
very quickly, and almost all blocks are immediately buffered.

Link Tree Buffer
Throughput Throughput Utilization

Node (KB/s) (KB/s) (%)

m
in
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m
ax

m
in

av
g

m
ax

m
in

av
g

m
ax

b7
asterix-1 201 235 254 147 155 165 98 98 99

ace 356 372 403 147 155 165 0 0 1
edge 231 235 244 147 155 164 0 0 1

asterix-2 186 204 224 146 154 164 3 4 5
ananda-1 341 397 507 147 155 165 0 0 0

umn-1 864 885 900 147 155 164 0 0 1
baobab 103 113 124 113 116 119 31 36 44

fermi-1 31 32 34 22 36 58 60 69 74
berk-1 121 209 309 22 36 58 1 1 1

pisa-1 21 25 28 17 19 21 82 83 83
ucsb-1 721 769 821 17 19 21 1 1 1
cmu-1 667 671 678 17 19 21 1 1 1

berk-2 107 387 555 219 367 558 95 96 99
ucsb-2 65 118 173 135 159 177 27 46 66

cmu-4 538 625 673 134 158 176 0 1 1
ananda-2 1044 1159 1366 134 158 176 0 0 0

dogmatix 219 372 561 134 150 164 0 10 27
umn-2 872 877 888 134 150 164 0 0 0

b8 91 133 165 128 154 186 49 59 69
asterix-3 258 276 308 128 136 146 10 17 27

berk-3 94 161 214 116 125 133 3 4 4
pisa-2 346 483 560 127 135 146 3 3 3

cmu-2 884 905 939 128 154 185 0 1 1
fermi-2 660 690 721 128 154 185 0 0 0

Fig. 4. Throughput and Buffer Utilization in an experimental Overlay Tree.

One immediately observes from this table that the assertion
of Theorem 3 is valid, namely, the group throughput is equal to
the minimum of the local maximum TCP throughput. One can
also observe that the buffer occupancy is quite high in many
buffers. This is due to the fact that the local TCP throughputs
are quite heterogeneous.

IV. SCALABLE BUFFERS VIA RATE CONTROL

This section explores the scalability of buffer occupancy and
of latency. Namely, we examine the conditions under which
the connection can achieve bounded local latency and bounded
buffer occupancy after the transmission of a large number of
packets on a multicast tree of arbitrary size.

We use the sojourn time of a packet m in the k-th overlay
edge: V λ

m,k = Dλ
m,k − Dλ

m,k−1.

A. The Necessity of a Rate Control at the Source

The first result of this section shows the necessity to control
the rate at which the source sends data.

Theorem 4: If the intensity of packet arrival date
(Tm)m∈Z, denoted by λ is larger than Θ∞

1,K (defined in §III-
A), then there exists at least one station 1 ≤ k ≤ K, for
which the sojourn time of packet m converges to infinity in
probability when m goes to infinity.

Proof: The result reduces to the study of an overlay edge
with reference throughput θ∞k ≤ λ. We have to distinguish
between the case λ > θ∞k and the critical case λ = θ∞k . For
the case λ > θ∞k , the result follows from the ergodic theorem
and one can actually show using techniques similar to those of
Chapters 7 of [4] that in this case, the sojourn time of packet
m converges to infinity almost surely. The proof in the critical
case is based on the central limit theorem. �

B. Scalability of Latency with Rate Control

We now consider the case where the source throttles packet
emission at rate λ with λ < Θ∞

1,K and in such a way that the

inter-emission times at the source, which is denoted by τm =
Tm+1 − Tm, form a stationary and ergodic sequence. Then
under the stationary ergodic assumptions of the last sections
concerning windows and service times, one can construct the
stationary regime of the first K overlays as follows.

Let Rm,k denote the time that elapses between the emission
of packet m by the source until this packet leaves overlay k,
namely Rm,k = Dλ

m,k−Tm, where Dλ
m,k is the departure time

of packet m from overlay edge k, which is obtained from the
max-plus equations (1–4) for the boundary conditions Tm at
the source described above.

The stationary version of the Rm,k variable can be viewed
as that obtained when taking into account the emission of all
packets n ≤ m, where n ranges down to −∞. It is easy to
check that this variable, which is denoted by R̃m,k, can also
be represented using our longest path approach via

R̃m,k = sup
n≤m

{Wei(m,k+1)→(n,1) −
m−1∑
i=n

τi}. (5)

For more on this type of representations, see [1]. This has
to be compared to the transient version of the Rk

[m′,m]

variable when taking only into account all packets between
m′ and m (with of course m′ ≤ m) and when depart-
ing from an empty system which is given by: Rk

[m′,m] =
supm′≤n≤m{Wei(m,k+1)→(n,1) −

∑m−1
i=n τi}. It is clear from

this representations that Rk
[m′,m] ≤ R̃m,k for all m′ (within

this setting, the stationary regime is the worst case scenario
when compared to the transient starting from an empty sys-
tem). Of course, this stationary regime allows one to define
that of the sojourn time of packet m in overlay k via Ṽm,k =
R̃m,k − R̃m,k−1 with the convention R̃m,0 = 0.

In what follows, both in the simulation results and the
mathematical derivations, the stochastic assumptions is that
the packet inter-emission times at the source are i.i.d. and
independent of the aggregated service times. The aggregated
service time is also assumed independent for different routers
and i.i.d. for each given router.

We are considering both

• The homogeneous case where all overlay edges have the
same number of routers and the same aggregated service
time law; we denote by θ the local maximum throughput
of an overlay edge.

• The non homogeneous case where the laws of the aggre-
gated service times are assumed to be all bounded from
above by a variable s̄, with respect to the stochastic order
(see e.g. [2], Ch 4): for all k, h and m, s

(k,h)
m ≤st s̄.

In addition, we assume that the number of routers in
an overlay edge Hk are all bounded by some constant
H̄ . In this case, we consider the homogeneous upper
bound system where Hk = H̄ for any value of k and the
aggregated service times in nodes are independent with
same law s̄ (except for k ≥ 1 and h = 0 where s

(k,0)
m =

0). Here θ denotes the local maximum throughput of such
an homogeneous upper bound overlay network.
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Under the condition λ < θ, the throttling mechanism is
hence such that all finite trees admit a stationary regime in
the sense that the stationary sequence {R̃m,k} is finite. Hence,
under this condition, for all multicast trees of depth K, the
buffer occupancy of any end-system and the packet sojourn
time through any overlay edge converge in distribution to finite
random variables when the number of transmitted packet goes
to infinity.

The main scalability question concerns what happens when
one then lets K go to infinity. Do the stationary sojourn time
through an overlay edge of depth K and the buffer occupancy
in an end-system of depth K converge to a finite limit when
K goes to infinity ?

The mathematics for approaching these questions of buffer
occupancy and packet latency in very large networks require
the extension of the hydrodynamic limits proved in [1] for in-
finite tandem of GI/GI/1 queues to infinite tandem and infinite
trees of TCP connections over edges composed themselves of
several routers. We start with simulation results and back them
by mathematical justifications.

C. Simulation Results

All the simulation results of the paper are based on a direct
exploitation of the evolution equations of §II-C.2. Only the
homogeneous case is considered.

Figure 5 studies the stationary mean buffer occupancy in an
end-system located at level k of an overlay network composed
of an arbitrary tree. The throttling of the source is assumed to
be realized via a deterministic scheme: it sends a packet every
λ−1 seconds with λ < θ.
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Fig. 5. Convergence of the mean buffer occupancy at infinity.

As one can check, the mean buffer occupancy grows with
k and stabilizes to some asymptotic value b, which can be
intuitively thought of as the mean stationary buffer of an end-
system being at level ∞. This convergence illustrates the key
scalability result alluded to above. Combined with Little’s
law, this extends to a similar limiting result for the “delay
at infinity”, d which is again defined as the limit in k of the
stationary mean delay through an overlay edge located at level
k, when k goes to infinity.

Figure 6 studies the sensitivity of the b function w.r.t. the
throttling rate λ of the source. Four different curves are plotted

that give b as a function of λ for all λ < θ. The only difference
between these four curves is the distribution function of the
aggregated services representing the influence of cross traffic.
The lowest curve is that with exponential aggregated service
times. The upper curves feature various Pareto distributions
with increasing variability.
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Fig. 7. The mean buffer occupancy at infinity as a function of the throttling
rate for various packet marking probabilities.

As one can check the mean buffer occupancy at infinity is
quite sensitive to the variability of cross traffic. The influence
of an increased variability of the aggregated service distri-
bution functions is well illustrated by the comparison of the
exponential case to any of the Pareto cases and also by the
comparison of the various Pareto cases.

Figure 7 studies the sensitivity of the b function w.r.t. the
packet marking probability.

D. Mathematical Comments

The general aim of this section consists in outlining the
main steps of a mathematical justification of the scalability
results observed by simulation in the last subsection. The line
of thoughts is in the continuation of that of [1], [20] and [21].
The complete proof of the results can be found in [3].

The law s̄ is assumed to satisfy the condition:∫ +∞

0

P (s̄ ≥ u)1/2du < ∞ . (6)
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Theorem 5: Under this assumption, for all x ≥ 0, the a.s.
limit γ(x) = lim D∞(�xk�,k)

k exists and is finite for all rational
numbers x. The γ function is deterministic nondecreasing.
This function is called the hydrodynamic limit of the saturated
system. The proof of this result is based on subadditivity and
on the notion of greedy lattice animal (see the references in
[20]). All details can be found in our technical report [3].

We are now in a position to state the main mathematical
result, backing of the scalability of latency.

Theorem 6: Under the last set of assumptions, if the γ
function is concave, and limx→∞ γ′(x) = θ−1 then

1
K

∑
k=1,..,K

Ṽm,k =
1
K

R̃m,K → d < ∞ as K → ∞,

where the last convergence takes place both a.s. and in
expectation. In addition, d is given by the following formula:

d = sup
x>0

(
γ(x) − 1

λ
x

)
. (7)

The proof is similar to those used for analogue results in
[1], [20] and [21], and can be found in detail for this case
in the technical report [3]. This result should be interpreted
as follows: when the depth of the overlay tree grows large,
the sum of the delays on a path originating from the source
and ending in some end-system (or equivalently the overall
latency up to this end-system), grows linearly with the level
of the end-system, with an average increment of d seconds
per overlay in the limit, where d is some finite constant. The
computation of the constant d requires the knowledge of the
hydrodynamic limit γ(x) associated with the random graph
of the saturated problem. To the best of our knowledge, the
explicit form of this function is only known in the particular
case with constant window W

(k)
m ≡ 1, with Hk = 1, and

with s exponential, where it was studied in the context of
first passage percolation (see [1] and the references therein).
Fortunately, the exact value of d is not needed in order to
derive the qualitative scaling result of the last theorem, namely
the finiteness of d.

The concavity of γ and the fact that γ′ tends to θ hold in the
case W k

m ≡ 1 (see [1], [14]). We conjecture that this holds true
for the more general setting with varying window considered
here. Figure 8 gives an example of the γ function. For this
case as for all other simulated cases, the conditions allowing
one to compute d from γ and in particular its concavity are
clearly satisfied (up to the statistical noise).

Figure 9 plots two evaluations of d as a function of the
throttling rate λ : The first one gives d defined analytically
via (7) whereas the second one evaluates d by simulation as
the average stationary sojourn time at infinity. The match is
very good, as long as the throttling rate is not taken too close
to θ.

The results of Theorem 6 extend to latency. We have :

limk→∞ 1
k

∑k
l=1 E[Ṽm,l] = d. (8)

Let B̃m,k denote the stationary buffer occupancy in overlay
k, which by definition includes the packets buffered in the k-
th node itself and those in transit in the path from node k to
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node k+1. From Little’s law, for all k, E[B̃m,k] = λE[Ṽm,k],
where λ denotes the rate of the stationary input into overlay k.
So, from (8), the limit limk→∞ 1

k

∑k
l=1 E[B̃m,l] exists and is

equal to a finite constant (equal to dλ). This shows that under
the throttling strategy described in §V.C, the buffer occupancy
scales in the following sense: when the number of overlays
grows large, the sum of the mean stationary buffer contents
grows linearly with the number of overlays, with an average
increment of dλ packets per overlay in the limit.

E. Experimental Results

In Figure 10 we show the effect of transmission rate control
at the source node on buffer utilization. This experiment is
identical to the overlay multicast experiment, described in § III,
except that we have introduced a 10-millisecond delay between
sending individual 100-byte blocks at the source node. This
corresponds to fixed transmission rate of approximately 9.75
kilobytes per second.

This experiment is performed on the same configurations,
as in Figure 4. Figures for local maximal throughputs are
repeated from this table. To collect the measurements, we ran
unsynchronized transfers, overlay multicast and overlay mul-
ticast with transfer rate control in sequence, one experiment
after another without delays, until 10 measurements in each
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experiment were taken. An average time of one experiment
ranged from 2 to 5 minutes. By performing measurements
immediately one after another, we tried to minimize the effects
of network fluctuation as much as possible.

Link Fixed Buffer
Throughput Rate Utilization

Node (KB/s) (KB/s) (%)
m
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m
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m
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m
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ax

b7
asterix-1 201 235 254 10 10 10 0 1 3

ace 356 372 403 10 10 10 0 0 0
edge 231 235 244 10 10 10 0 25 74

asterix-2 186 204 224 10 10 10 0 0 0
ananda-1 341 397 507 10 10 10 0 0 0

umn-1 864 885 900 10 10 10 0 0 0
baobab 103 113 124 10 10 10 0 1 4

fermi-1 31 32 34 10 10 10 0 1 3
berk-1 121 209 309 10 10 10 1 1 1

pisa-1 21 25 28 10 10 10 1 2 3
ucsb-1 721 769 821 10 10 10 1 1 1
cmu-1 667 671 678 10 10 10 1 1 1

berk-2 107 387 555 10 10 10 0 0 0
ucsb-2 65 118 173 10 10 10 0 0 0

cmu-4 538 625 673 10 10 10 0 0 0
ananda-2 1044 1159 1366 10 10 10 0 0 0

dogmatix 219 372 561 10 10 10 0 0 0
umn-2 872 877 888 10 10 10 0 0 0

b8 91 133 165 10 10 10 0 2 6
asterix-3 258 276 308 10 10 10 0 1 3

berk-3 94 161 214 10 10 10 0 0 1
pisa-2 346 483 560 10 10 10 0 1 1

cmu-2 884 905 939 10 10 10 0 0 1
fermi-2 660 690 721 10 10 10 0 0 0

Fig. 10. Throughput and Buffer Utilization in an experimental Overlay Tree
with controlled rate at the source.

It is clear from this table that for all these three configu-
rations, the rate control mechanism is very effective. All the
overlay edges now experience the same throughput. Moreover,
the buffer occupancy is strikingly low, and this in spite of the
fact that the local TCP throughputs are quite heterogeneous.

V. IMPLICATION ON OVERLAY PROTOCOL DESIGN

In this section, we focus on the implications that the
scalability results of the last sections have on the protocol for
building overlay trees. Theorems 3 and 6 establish that in order
to have acceptable buffer occupancy in each end-system and
latency through each overlay edge of a large overlay network,
the sending rate of the source has to be limited to some value
that is strictly less than the overlay group throughput, which
was shown to coincide with the minimum of the local maximal
throughput of all overlay edges.

The immediate implication of the above results on the
overlay tree construction is that the forwarding paths should
be chosen such that the resulting overlay tree has the local
maximal throughput of its bottleneck overlay edge maximized.
Note that in an overlay network, every node has a logical path
or a forwarding edge to every other node. Thus the problem
consists in choosing n−1 logical edges out of these n(n−1)
edges such that

• the chosen n − 1 edges form a spanning tree;
• the bottleneck overlay edge in the resulting spanning tree

has a local maximal throughput as large as possible.

Thus the protocol for designing overlay based reliable group
communication has to (i) be aware of the rates on the logical
path between any two nodes, (ii) efficiently select those paths
that lead to maximizing the group throughput (iii) effectively
determine the bottleneck rate to adapt the sending rate of the
source. While we do not attempt to provide a detailed solution

for developing the complete protocol, we provide insight into
these three aspects below.

A. Optimal Tree Construction Algorithm

Consider a complete graph G = (V,E). Nodes in the graph
correspond to end-systems and (optionally) servers, which are
used to build an overlay network. Assume that nodes are
numbered from 1 to n, where node 1 is the root, from which
data is transmitted. Each pair of nodes i, j ∈ V is connected
via an overlay edge (a route in the Internet) with maximum
local throughput θij . Although each node can send copies of
information to several other nodes simultaneously, it makes
sense to assume that the total throughput of each node i for
outgoing transmissions is limited by a constant ci (which is
typically determined by the access link connecting node i to
the Internet).

We define the throughput of a path P in graph G to be the
minimum of θij over all links (i, j) ∈ P . From the results of
the previous sections, the problem is to find a tree from root
with maximum group throughput, where group throughput is
by definition the minimum of all path throughput in the tree.

We consider this problem of overlay tree construction in two
cases. In the first case, we ignore the throughput limitation at
the access link that was alluded to above. This case refers
to the situation when TCP throughput is dominated by a
bottleneck other than the access link. The second model
accounts for the bottleneck at the access link. As we shall
see, the first case is tractable and it is possible to design an
optimal solution for it. The second model results in a minimum
degree spanning tree construction which is NP hard.

1) Model I: Access Link not the Bottleneck: Under the
assumption that the access link is not the bottleneck, the
maximal local throughput θij (which we recall to be the TCP
throughput that a saturated source located in node i would
experience) can be estimated from measurements of the RTT
rij on the edge and the marking probability pij on the edge
using the square root formula for persistent flows (see [22]).
As described above, the construction of overlay tree consists
in choosing n − 1 edges out of n(n − 1) logical edges. The
following algorithm allows one to construct a tree with optimal
group throughput:

• Sort all n(n − 1)/2 edges in increasing (local maximal)
throughput order (assume for sake of simplicity that all
throughput are different, so that the order is total);

• Discard edges starting with those with the smallest
throughput until the set of remaining edges on the n nodes
makes a connected graph; let n + 1 ≤ K(K − 1)/2 be
the number of discarded edges when connectedness is
lost for the first time;

• Build a spanning tree rooted in the source using the
K(K − 1)/2 − n remaining edges of the sorted list.

The resulting spanning tree, say T is optimal as easily shown
by contradiction: assume there exists a spanning tree rooted
in the source node and that has a better group throughput than
T . Then this tree uses none of the n+1-st edges of the sorted
list. There should then exist a spanning tree from the root to
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all other nodes and using the K(K − 1)/2− n− 1 last edges
of the list, which contradicts the stopping rule used for the
definition of n.

2) Model II: Accounting for Bottleneck at Access Link:
In practice, this case refers to the situation where forwarding
nodes are typically connected to the Internet via DSL/Cable
and modem links. The decision problem under this setting is
a generalization of the minimum degree spanning tree (which,
in turn, is a generalization of Hamiltonian path), and therefore
the problem is provably NP-hard. We provide a heuristic that
is guaranteed to achieve at least 1/2 of the optimal throughput,
if either min ci/max ci ≥ 1/2 or download bandwidth is at
most twice upload bandwidth for each node.

Solution Strategy: Suppose we fix target group throughput
θ. Next, we can remove from our network G the links that have
throughput less than θ, since these links cannot participate in
any feasible solution. Let us call the new graph G′

θ = (V,E′
θ),

where E′
θ = {(i, j) ∈ E : θij ≥ θ}. Naturally, while G is a

complete graph, G′
θ is not necessarily complete. With θ fixed,

the constraints on node throughput for each node i can be
treated as degree constraints, allowing the solution to have
at most �ci/θ� outgoing links per node. If we can construct
a spanning tree T in graph G′

θ, such that T satisfies the
degree constraints, T can be used as an overlay routing with
throughput θ. We can further use binary search to find the
smallest value of θ, for which such a tree can be constructed.

Unfortunately, it is known that the problem of finding
a spanning tree T , satisfying degree constraints, in general
graphs (or proving that no such tree can be constructed) cannot
be solved exactly in polynomial time. Therefore we adopt
an approximation algorithm with polynomial running time,
proposed in [13] for finding a spanning tree of minimum
degree with additive error of at most one.

Now we describe our generalization of approximation al-
gorithm for minimum degree spanning tree [13]. Our goal is
to learn, given a fixed throughput value, whether there exists
a routing (i.e. a spanning tree) that allows one to achieve
this throughput, and if it exists, to give the routing tree. The
described problem is NP-hard, and therefore the solution will
be approximate: our algorithm will violate some of degree
constraints when constructing the tree. As it is shown in
the previous section, if constraint violation can be bounded,
objective value can be modified to satisfy the constraints, it is
possible to bound required difference in the objective value.

For a given target value of throughput θ = θ̃, graph
G′

θ = (V,E′
θ), and bounds {ci}i∈V , our algorithm constructs

in polynomial time a spanning tree T in G′
θ, such that degree

constraints in T are violated by at most 1 for each node,
provided that there exists a spanning tree satisfying all degree
constraints implied by throughput θ̃.

Let us choose θ̃ to be the target value of θ, and compute
degree constraints di for each node i based on this target value:
di = �ci/θ̃� + 1. If for one of the nodes i, the degree limit di

is 0, the algorithm must report failure, since node i cannot be
reached and a feasible routing does not exist. Therefore, in the
rest of our analysis we will assume that di ≥ 1 ∀i.

The algorithm starts by constructing an arbitrary spanning
tree in G′

θ̃
, using any simple algorithm; depth first search is

a good choice, for example. Then, it computes a set B ⊂ V
of all nodes with maximum degree constraint violation, and
tries to reduce the cardinality of B by performing a series of
improvements. For example, if degree constraints are violated
by 3, 5 and 7 extra edges, the algorithm will form B of all
nodes of the tree that have 7 edges more than it is allowed.

We define improvement as following. Suppose maximum
degree violation in our tree is k. Then, if adding an edge
connecting two nodes with degree violation less than k− 1 to
the tree, and breaking the loop by removing one edge, incident
to one of the nodes with violation k, from the tree, reduces
degree violation of one of the nodes in B from k to k−1, we
say that this operation is an improvement. An improvement
may also involve series of edge exchanges, which do not
modify the degree of any nodes with violation k − 1, and
decrease the degree of one of the nodes with violation k.

The algorithm performs improvements until no improve-
ments are possible, or until B is empty. When B is empty,
we build a new set B of nodes with violation k − 1, and
repeat the procedure, until there are no violating nodes or
until no improvements are possible. The details of proof of
the correctness and the optimality result are described in [3].

B. Rate Control Mechanisms

The proposed rate control mechanisms seem to be a very
good alternative to the back pressure mechanism. They not
only exhibit scalable throughput, but also scalable buffer oc-
cupancy and packet delays. The experimental results confirm
this. From practical standpoint, several issues need to be
considered.

The first one is the rate estimation. As we only need to
know what is the smallest local maximum TCP throughput,
the edges only need to measure the RTT and packet marking
probability and report them back to the source. The source
can then determine the critical threshold Θ1,K .

The second one is the rate adaptation. It is well known
that the network conditions fluctuate quite a lot. In order to
achieve a scalable throughput and a scalable buffer occupancy,
one needs to be pessimistic and to consider a worst case
scenario by adopting a low rate. A more appealing approach
would be to adapt the send rate of the source dynamically.
This rate adaptation can be carried out in accordance with the
throughput estimation as discussed above.

VI. CONCLUSIONS

We have presented a mathematical framework for the study
of the scalability of overlay based reliable group commu-
nication using TCP. In the case of unconstrained overlay
buffers with rate control, we have established the scalability
of such a paradigm in both the obtained throughput and the
buffer required for arbitrary large group. Experimental results
obtained with a prototype validate the theoretical ones.

One of the main scientific contributions of the present paper
is the general link that it establishes between the scalability
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of reliable overlay multicast and the properties of the type of
hydrodynamic limits encountered in certain models of statisti-
cal physics such as percolation and particle systems. This link
has several direct and important implications. For instance, as
it was seen in Section IV, one of the key questions of overlay
multicast, which is that of the behavior of the buffer contents
in end-systems when the size of the multicast group grows
large, can actually be obtained by computing the Legendre
transform of some hydrodynamic shape as encountered in first
passage percolation [15]. In addition, the analysis gives some
moment conditions on the cross traffic encountered by a long
lived TCP flow in routers that guarantee the actual scalability
of buffer contents.

Our results on rate control at the source node and the con-
ditions required to maximize group throughput provide useful
insights into the design of scalable reliable group communi-
cation protocols using overlays. A first general observation is
that in order to maximize the group’s throughput, the design of
the protocol and the construction of the distribution tree should
take into account the local maximum throughput of the TCP
connections between end systems. Such a consideration seems
to be neglected in protocols and algorithms proposed in the
literature for the group communication using overlays which
primarily focus on the network distances between end systems.
Another general observation is that rate control combined
with TCP congestion control mechanism provides a scalable
approach in both throughput and buffer occupancy. Such a
combination of rate throttling and congestion control should
be considered in the design of efficient and effective reliable
overlay multicast schemes.

There are a number of issues that remain to be addressed.
The first one is the scalability issue of any tree topology when
a back pressure is implemented in each node (i.e. when the
buffer of a node is full, this node stops the communication
coming from the upstream node). In this approach, no rate
control may be needed at the source. However the throughput
may degrade, and the structure of the overlay tree may have a
direct impact on the throughput. This case will be the subject
of a companion paper.

REFERENCES

[1] F. Baccelli, A. Borovkov and J. Mairesse, Asymptotic results on infinite
tandem queueing networks, Probability and Related Fields 118, p.365-
405, October 2000.

[2] F. Baccelli and P. Bremaud, Elements of Queuing Theory, Springer
Verlag (2nd edition 2002).

[3] F. Baccelli, A. Chaintreau, Z. Liu, A. Riabov, S. Sambit
Scalability of Reliable Group Communication Using Overlays,
INRIA Research Report 4895 (July 2003), available at :
http://www.inria.fr/rrrt/rr-4895.html.

[4] F. Baccelli, G. Cohen, G. Olsder, J.P. Quadrat Synchronization and
Linearity, Wiley, 1992.

[5] F. Baccelli and D. Hong, TCP is Max-Plus Linear and what it tells us
on its throughput, ACM Sigcomm 2000, p.219-230.

[6] S. Banerjee, B. Bhattacharjee and C. Kommareddy, Scalable Application
Layer Multicast, in Proceedings of ACM Sigcomm 2002.

[7] C.Bormann, J.Ott, H.-C. Gehrcke, T.Kerschat and N. Seifert, MTP-
2: Towards Achieving the S.E.R.O. Properties for Multicast Transport,
International Conference on Computer Communications and Networks
(ICCCN 94), 1994

[8] Y. Chawathe, S. McCanne, and E. A. Brewer, RMX: Reliable Multicast
for Heterogeneous Networks, in Proceedings of IEEE Infocom, 2000.

[9] A. Chaintreau, F. Baccelli and C. Diot, Impact of TCP-like Congestion
Control on the Throughput of Multicast Group, IEEE/ACM Transactions
on Networking vol.10, p.500-512, August 2002.

[10] Y.-H. Chu, S. G. Rao, and H. Zhang, A Case for End System Multicast,
in Proceedings of ACM SIGMETRICS, June 2000.

[11] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, A Reliable
Multicast Framework for Light-weight Sessions and Application Level
Framing, in IEEE/ACM Transactions on Networking, December 1997,
Volume 5, Number 6, pp. 784-803.

[12] P. Francis, Yoid: Extending the Internet Multicast Architecture,
http://www.icir.org/yoid/docs/yoidArch.ps.gz (April 2000).
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